Les matrices de Gell-Mann, nommées d'après Murray Gell-Mann (-), sont, en physique des particules, un ensemble de huit matrices 3 x 3 hermitiennes et de trace nulle qui forment une représentation des générateurs du groupe SU(3).

Elles sont notées λ a {\displaystyle \lambda _{a}} et sont par convention données par les huit matrices suivantes :

Elles vérifient les relations suivantes :

T r ( λ a λ b ) = 2 δ a b [ λ a , λ b ] = 2 i f a b c λ c {\displaystyle {\begin{aligned}\mathrm {Tr} \left(\lambda _{a}\lambda _{b}\right)&=2\,\delta _{ab}\\\left[\lambda _{a},\lambda _{b}\right]&=2{\rm {i}}\,f_{abc}\lambda _{c}\end{aligned}}}

où :

  • δ {\displaystyle \delta } est le symbole de Kronecker,
  • T r {\displaystyle \mathrm {Tr} } est la trace,
  • [ , ] {\displaystyle \left[\cdot ,\cdot \right]} est le commutateur,
  • i {\displaystyle {\rm {i}}} est l'unité imaginaire ( i 2 = 1 ) {\displaystyle \left({\rm {i}}^{2}=-1\right)}
  • sur un indice double (ici c {\displaystyle c} ), une sommation est à effectuer (convention d'Einstein).

La première relation exprime que les matrices sont orthogonales et normées. La deuxième avec le commutateur contient les constantes de structure dont les valeurs sont :

  • f 123 = 1 {\displaystyle f_{123}=1} ,
  • f 147 = f 156 = f 246 = f 257 = f 345 = f 367 = 1 2 {\displaystyle f_{147}=-f_{156}=f_{246}=f_{257}=f_{345}=-f_{367}={\frac {1}{2}}} ,

et

  • f 458 = f 678 = 3 2 {\displaystyle f_{458}=f_{678}={\frac {\sqrt {3}}{2}}} .

A noter que f a b c {\displaystyle f_{abc}} est totalement antisymétrique par rapport aux trois indices, donc p.ex., f 123 = f 132 = f 231 {\displaystyle f_{123}=-f_{132}=f_{231}} .

Voir aussi

  • Matrices de Pauli
  • Classification des mésons et baryons (nommée la « voie octuple » par Murray Gell-Mann)
  • Matrice de Dirac

Bibliographie

  • [Taillet, Villain et Febvre 2018] Richard Taillet, Loïc Villain et Pascal Febvre, Dictionnaire de physique, Louvain-la-Neuve, De Boeck Supérieur, hors coll. / sciences, , 4e éd. (1re éd. ), 1 vol., X-956, ill. et fig., 17 × 24 cm (ISBN 978-2-8073-0744-5, EAN 9782807307445, OCLC 1022951339, BNF 45646901, SUDOC 224228161, présentation en ligne, lire en ligne), s.v. Gell-Mann (matrices de), p. 335, col. 2col. 2&rft.tpages=1 vol., X-956&rft_id=info:oclcnum/1022951339&rfr_id=info:sid/fr.wikipedia.org:Matrices de Gell-Mann">.


  • Portail de la physique

Numbering scheme for the generalized GellMann matrices λα (α=0,…,n2−1

GellMann Matrix from Wolfram MathWorld

(PDF) Rectangle GellMann Matrices Ra Ra Academia.edu

GellMann Matrix from Wolfram MathWorld

Gamma matrices and GellMann's I Y categorization